Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Viruses ; 13(8)2021 08 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1376994

RESUMEN

Viral infection is a global public health threat causing millions of deaths. A suitable small animal model is essential for viral pathogenesis and host response studies that could be used in antiviral and vaccine development. The tree shrew (Tupaia belangeri or Tupaia belangeri chinenesis), a squirrel-like non-primate small mammal in the Tupaiidae family, has been reported to be susceptible to important human viral pathogens, including hepatitis viruses (e.g., HBV, HCV), respiratory viruses (influenza viruses, SARS-CoV-2, human adenovirus B), arboviruses (Zika virus and dengue virus), and other viruses (e.g., herpes simplex virus, etc.). The pathogenesis of these viruses is not fully understood due to the lack of an economically feasible suitable small animal model mimicking natural infection of human diseases. The tree shrew model significantly contributes towards a better understanding of the infection and pathogenesis of these important human pathogens, highlighting its potential to be used as a viable viral infection model of human viruses. Therefore, in this review, we summarize updates regarding human viral infection in the tree shrew model, which highlights the potential of the tree shrew to be utilized for human viral infection and pathogenesis studies.


Asunto(s)
Modelos Animales de Enfermedad , Tupaia , Virosis , Infecciones por Adenoviridae/inmunología , Infecciones por Adenoviridae/virología , Animales , COVID-19/virología , Dengue/inmunología , Dengue/patología , Dengue/virología , Infecciones por VIH/virología , Hepatitis B/inmunología , Hepatitis B/virología , Hepatitis C/inmunología , Hepatitis C/patología , Hepatitis C/virología , Herpes Simple/patología , Herpes Simple/virología , Humanos , Gripe Humana/inmunología , Gripe Humana/virología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/patología , Infección por el Virus Zika/virología
2.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1027278

RESUMEN

Infectious diseases represent a relevant issue in lung cancer patients. Bacterial and viral infections might influence the patients' prognosis, both directly affecting the immune system and indirectly impairing the outcome of anticancer treatments, mainly immunotherapy. In this analysis, we aimed to review the current evidence in order to clarify the complex correlation between infections and lung cancer. In detail, we mainly explored the potential impact on immunotherapy outcome/safety of (1) bacterial infections, with a detailed focus on antibiotics; and (2) viral infections, discriminating among (a) human immune-deficiency virus (HIV), (b) hepatitis B/C virus (HBV-HCV), and (c) Sars-Cov-2. A series of studies suggested the prognostic impact of antibiotic therapy administration, timing, and exposure ratio in patients treated with immune checkpoint inhibitors, probably through an antibiotic-related microbiota dysbiosis. Although cancer patients with HIV, HBV, and HCV were usually excluded from clinical trials evaluating immunotherapy, some retrospective and prospective trials performed in these patient subgroups reported similar results compared to those described in not-infected patients, with a favorable safety profile. Moreover, patients with thoracic cancers are particularly at risk of COVID-19 severe outcomes and mortality. Few reports speculated about the prognostic implications of anticancer therapy, including immunotherapy, in lung cancer patients with concomitant Sars-Cov-2 infection, showing, to date, inconsistent results. The correlation between infectious diseases and immunotherapy remains to be further explored and clarified in the context of dedicated trials. In clinical practice, the accurate and prompt multidisciplinary management of lung cancer patients with infections should be encouraged in order to select the best treatment options for these patients, avoiding unexpected toxicities, while maintaining the anticancer effect.


Asunto(s)
Infecciones Bacterianas/complicaciones , COVID-19/complicaciones , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Carcinoma de Pulmón de Células no Pequeñas/terapia , Inmunoterapia , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/terapia , Virosis/complicaciones , Síndrome de Inmunodeficiencia Adquirida/complicaciones , Síndrome de Inmunodeficiencia Adquirida/inmunología , Síndrome de Inmunodeficiencia Adquirida/patología , Síndrome de Inmunodeficiencia Adquirida/terapia , Antibacterianos/administración & dosificación , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/patología , COVID-19/patología , Carcinoma de Pulmón de Células no Pequeñas/microbiología , Carcinoma de Pulmón de Células no Pequeñas/virología , VIH/efectos de los fármacos , Hepatitis B/complicaciones , Hepatitis B/inmunología , Hepatitis B/patología , Hepatitis C/complicaciones , Hepatitis C/tratamiento farmacológico , Hepatitis C/patología , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/microbiología , Neoplasias Pulmonares/virología , Microbiota/efectos de los fármacos , Microbiota/inmunología , Tratamiento Farmacológico de COVID-19
3.
Theranostics ; 10(26): 12223-12240, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-934619

RESUMEN

Rationale: Many viral infections are known to activate the p38 mitogen-activated protein kinase (MAPK) signaling pathway. However, the role of p38 activation in viral infection and the underlying mechanism remain unclear. The role of virus-hijacked p38 MAPK activation in viral infection was investigated in this study. Methods: The correlation of hepatitis C virus (HCV) infection and p38 activation was studied in patient tissues and primary human hepatocytes (PHHs) by immunohistochemistry and western blotting. Coimmunoprecipitation, GST pulldown and confocal microscopy were used to investigate the interaction of p38α and the HCV core protein. In vitro kinase assays and mass spectrometry were used to analyze the phosphorylation of the HCV core protein. Plaque assays, quantitative real time PCR (qRT-PCR), western blotting, siRNA and CRISPR/Cas9 were used to determine the effect of p38 activation on viral replication. Results: HCV infection was associated with p38 activation in clinical samples. HCV infection increased p38 phosphorylation by triggering the interaction of p38α and TGF-ß activated kinase 1 (MAP3K7) binding protein 1 (TAB1). TAB1-mediated p38α activation facilitated HCV replication, and pharmaceutical inhibition of p38α activation by SB203580 suppressed HCV infection at the viral assembly step. Activated p38α interacted with the N-terminal region of the HCV core protein and subsequently phosphorylated the HCV core protein, which promoted HCV core protein oligomerization, an essential step for viral assembly. As expected, SB203580 or the HCV core protein N-terminal peptide (CN-peptide) disrupted the p38α-HCV core protein interaction, efficiently impaired HCV assembly and impeded normal HCV replication in both cultured cells and primary human hepatocytes. Similarly, severe fever with thrombocytopenia syndrome virus (SFTSV), herpes simplex virus type 1 (HSV-1) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection also activated p38 MAPK. Most importantly, pharmacological blockage of p38 activation by SB203580 effectively inhibited SFTSV, HSV-1 and SARS-CoV-2. Conclusion: Our study shows that virus-hijacked p38 activation is a key event for viral replication and that pharmacological blockage of p38 activation is an antiviral strategy.


Asunto(s)
COVID-19/metabolismo , Hepacivirus/metabolismo , Hepatitis C/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células A549 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , COVID-19/virología , Chlorocebus aethiops , Activación Enzimática , Células HEK293 , Hepatitis C/patología , Hepatitis C/virología , Hepatocitos/metabolismo , Humanos , Imidazoles/farmacología , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Fosforilación , Piridinas/farmacología , Células Vero , Proteínas del Núcleo Viral/metabolismo , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA